480 | 3 | 6 |
下载次数 | 被引频次 | 阅读次数 |
为明确蒜芥茄(Solanum sisymbriifolium Lam.)在我国的适生性,根据蒜芥茄在全球最新分布数据和气候环境变量,利用MaxEnt模型结合ArcGIS软件对其在我国的潜在地理分布进行预测,并对相关环境因子对预测结果的影响进行分析。研究结果显示:蒜芥茄在我国的适生区包括华南全部地区,华中、华东大部分地区,西南、西北部分地区以及华北零星地区。未来气候条件与历史气候条件下的适生范围基本一致,适生程度在不同气候情景下存在一定差异。对预测结果的重要性排前三的环境变量是温度季节变化bio4、最冷季度平均温度bio11、最暖季度平均温度bio10。研究结果可为蒜芥茄在我国的发生提供早期预警和有效防控提供科学指导。
Abstract:In order to analyze the suitability of Solanum sisymbriifolium Lamarck in China,according to the latest distribution of S. sisymbriifolium and the bioclimatic data,the MaxEnt model combined with ArcGIS were used to predict its potential geographic distribution in China,and the influence of related environmental factors on the prediction results was analyzed. The results showed that the suitable areas included all of South China,most of Central and East China,parts of southwest and northwest and sporadic areas of North China. The suitable range of future climatic conditions is basically consistent with that of historical climatic conditions,while the degree of suitable conditions varies in different climatic scenarios.The top 3 environmental variables in terms of importance to prediction results are temperature seasonality(bio4),mean temperature of coldest quarter(bio11),and mean temperature of warmest quarter(bio10).The results can provide scientific guidance for early warning and effective prevention and control of the occurrence of S. sisymbriifolium in our country.
[1] CABI. Solanum sisymbriifolium(sticky nightshade)[EB/OL].[2023-04-30]. https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.117241.
[2] Zhang Z Y,Lu A M,William G D A. Solanaceae,Flora of China//Wu Z Y,Peter H R. Beijing:Science Press,1994:300-332.
[3] Srivastava S,Dvivedi A,Shukla R P. Solanum sisymbriifolium Lam.(Solanaceae):a new invasive undershrub of the old-fields of northeastern Uttar Pradesh. Check List,2015,11(3):1643.
[4] EPPO. Solanum sisymbriifolium in the EPPO region:addition to the EPPO Alert List[EB/OL].[2023-04-30]. https://gd.eppo.int/reporting/article-6932.
[5]董轩名,蔡佳文,郑妍,等.蒜芥茄Ss UBC基因的克隆及表达分析.分子植物育种,2018,16(17):5591-5600.
[6]程捷,龚亚菊,杜光辉,等.蒜芥茄染色体5S r DNA、18S r DNA和端粒序列位点检测及其核型分析.种子,2022,41(7):16-20,26.
[7]吴丽艳,尹梦莹,念润,等.蒜芥茄Ss Ve1和Ss Ve2基因的克隆及表达分析.分子植物育种,2021,19(23):7680-7687.
[8] More G K. A review of the ethnopharmacology,phytochemistry and pharmacological relevance of the South African weed Solanum sisymbriifolium Lam.(Solanaceae). Environment,Development and Sustainability,2019,21:37-50.
[9] Hill M P,Hulley P E. Aspects of the phenology and ecology of the South American weed,Solanum sisymbriifolium,in the Eastern Cape Province of South Africa. African Plant Protection,2000,6(2):53-59.
[10] Byrne M J,Currin S,Hill M P. The influence of climate on the establishment and success of the biocontrol agent Gratiana spadicea,released on Solanum sisymbriifolium in South Africa.Biological Control,2002,24(2):128-134.
[11] Karaer F,Kutbay H G. Solanum sisymbriifolium Lam.(Solanaceae):a new record for Turkey. Turkish Journal of Botany,2007,31:481-483.
[12] Hill M P,Hulley P E. Biology and host range of Gratiana spadicea(Klug,1829)(Coleoptera:Chrysomelidae:Cassidinae),a potential biological control agent for the weed Solanum sisymbriifolium Lamarck(Solanaceae)in South Africa. Biological Control,1995,5(3):345-352.
[13] USDA. Weed risk assessment for Solanum sisymbriifolium Lam.(Solanaceae)-sticky nightshade[EB/OL].[2023-04-30].https://www.aphis.usda.gov/plant_health/plant_pest_info/weeds/downloads/wra/Solanum_sisymbriifolium_WRA.pdf,2013.3.26.
[14]赵清,高新悦,蔡波,等.基于MaxEnt模型的检疫性害虫小蔗螟在中国的潜在分布预测.植物检疫,2022,36(1):77-82.
[15]朱耿平,刘国卿,卜文俊,等.生态位模型的基本原理及其在生物多样性保护中的应用.生物多样性,2013,21(1):90-98.
[16]张源,秦誉嘉,张岳,等.基于集成模型预测外来入侵植物北美刺龙葵的适生区.植物保护学报,2022,49(5):1434-1439.
[17]朱煜建,周伟光,张昊,等.刺蒺藜草在我国的适生区预测.植物检疫,2021,36(1):71-76.
[18]方焱,马晨,杨菲,等.基于Max Ent模型预测黄条灰翅夜蛾在中国的潜在地理分布.植物保护学报,2022,49(5):1417-1423.
[19]刘丹,姚俊萌,余焰文,等.气候变暖背景下柑橘木虱在中国的适生区变化.植物保护学报,2021,48(4):872-881.
[20]杨鹄溶,李恩,徐玉梅,等.腐烂茎线虫在山西省的适生区预测.福建农林大学学报(自然科学版),2022,51(1):39-45.
[21]魏鹏,张源,何佳遥,等.基于MaxEnt模型分析气候变化下玉米褪绿斑驳病毒的潜在地理分布.植物保护学报,2022,49(5):1367-1376.
[22]蒜芥茄[EB/OL].[2023-05-20]. https://www.cvh.ac.cn/spms/list.php?taxonName=%E8%92%9C%E8%8A%A5%E8%8C%84.
基本信息:
DOI:10.19662/j.cnki.issn1005-2755.2023.06.010
中图分类号:S451
引用信息:
[1]刘勇,方焱,张莹等.基于MaxEnt模型预测蒜芥茄在中国的潜在地理分布[J].植物检疫,2023,37(06):52-56.DOI:10.19662/j.cnki.issn1005-2755.2023.06.010.
基金信息: