nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2021, 02, v.35 33-38
进境新西兰苹果中欧洲枝溃疡病菌的分离和鉴定
基金项目(Foundation): 海关总署科研项目(2019HK044); 国家重点研发计划国家质量基础(NQI)专项(2017YFF0210302)
邮箱(Email): 13701635701@163.com;
DOI: 10.19662/j.cnki.issn1005-2755.2021.00.010
摘要:

从新西兰进境苹果的褐腐组织中分离得到1株新丛赤壳属菌株3072,对该菌株进行形态学特征观察、PCR检测、序列比对分析和致病性测定。结果表明,在PDA培养基上菌落乳白色至黄白色,气生菌丝茂密,边缘规则;在MEA培养基上菌落为白色、平铺生长。菌株为异宗配合。利用欧洲枝溃疡病菌(Neonectria ditissima)特异检测引物对Bt-fw135/Bt-rw284扩增菌株的基因组DNA得到150 bp的预期目标条带。菌株的β-tubulin序列与GenBank中N. ditissima的序列相似性为99.43%~100%。基于β-tubulin序列构建的系统进化树显示菌株3072与N. ditissima聚在同一个分支,亲缘关系最近。菌株接种苹果,接种处组织14 d后出现典型褐腐症状。根据上述检测结果,将菌株3072鉴定为欧洲枝溃疡病菌(N. ditissima)。

Abstract:

An isolate 3072 similar to Neonectria spp. was obtained from the brown rot tissue of imported apple fruit from New Zealand. To identify the isolate,its morphological characteristics,PCR detection with specific primers,β-tubulin sequence and its pathogenicity were analyzed. The data showed that colonies were milky or yellowish white with abundant aerial mycelium and regular margin on PDA medium;white and flat on MEA medium. The isolate is heterothallic. The result of PCR detection showed that the isolate 3072 can be amplified by N. ditissima specific primers Bt-fw135/Bt-rw284 and got expected bands of 150 bp. β-tubulin sequence of the isolate showed 99.43%-100% identity with N. ditissimaβ-tubulin sequences deposited in GenBank. The phylogenetic tree of the β-tubulin sequences showed the isolate 3072 was clustered closely with N. ditissima. Typical symptom of brown rot was observed on the wounded-inoculation apple after 14 days. All the results showed that the isolate 3072 was N. ditissima.

参考文献

[1] Garkava G L,Zborowska A,Sehic J,et al. Screening of apple cultivars for resistance to European canker,Neonectria ditissima. Acta Horticulturae,2013,976:529-536.

[2] Wenneker M,de Jong P F,Joosten N N,et al. Development of a method for detection of latent European fruit tree canker(Neonectria ditissima)infections in apple and pear nurseries. European Journal of Plant Pathology,2017,148(3):631-635.

[3] Amponsah N T,Walter M,Beresford R M,et al. Seasonal wound presence and susceptibility to Neonectria ditissima infection in New Zealand apple trees. New Zealand Plant Protection,2015,68:250-256.

[4] Brve J,Talg V,Stensvand A. Apple canker caused by Neonectria ditissima in Norway. IOBC-WPRS Bulletin,2015,110:105-106.

[5] Maxin P,Williams M,Weber R W S. Control of Fungal Storage Rots of Apples by Hot-Water Treatments:A Northern European Perspective. Erwerbs-Obstbau,2014,56(1):25-34.

[6] Weber R W S. Biology and control of the apple canker fungus Neonectria ditissima(syn. N. galligena)from a Northwestern European perspective. Erwerbs-Obstbau,2014,56(3):95-107.

[7] Kim K S,Beresford R M. Use of a climatic rule and fuzzy sets to model geographic distribution of climatic risk for European canker(Neonectria galligena)of apple. Phytopathology,2012,102(2):147-157.

[8] Zhao P,Luo J,Zhuang W Y,et al. DNA barcoding of the fungal genus Neonectria and the discovery of two new species. Science China Life Sciences,2011,54(7):664-674.

[9] Ghasemkhani M,Holefors A,Marttila S,et al. Real-time PCR for detection and quantification,and histological characterization of Neonectria ditissima in apple trees. Trees,2016,30(4):1-15.

[10]Zampieri E,Mello A,Bonfante P,et al. PCR primers specific for the genus Tuber reveal the presence of several truffle species in a truffle-ground. FEMS Microbiology Letters,2009,291(1):67-72.

[11] Scheper R W A,Fisher B M,Amponsah N T,et al. Effect of culture medium,light and air circulation on sporulation of Neonectria ditissima. New Zealand Plant Protection,2014,67:123-132.

[12]Saitou N,Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular biology and evolution,1987,4(4):406-425.

[13] Langrell S,Richard H. Molecular phylogeny,detection and epidemiology of Nectria canker(Nectria galligena Bres.)[D]. London:Imperial College London,2000.

[14]Wulf A,Kehr R. 3.2 Diseases,Disorders and Pests of Selected Valuable Broadleaved Tree Species. Valuable Broadleaved Forests in Europe,2009,22:61.

[15]曹静海,李凤琴,徐巨.西藏林芝地区苹果病害名录初报.中国果树,1997(3):51-52.

[16]张绍毓.苹果芽腐病调查研究.山西果树,1981(1):49-50.

[17]Zhao P,Luo J,Zhuang W,et al. DNA barcoding of the fungal genus Neonectria and the discovery of two new species.Science China Life Sciences,2011,54(7):664-674.

[18] Castlebury L A,Rossman A Y,Hyten A S. Phylogenetic relationships of Neonectria/Cylindrocarpon on fagus in North America. Botany,2006,84(9):1417-1433.

[19]Ghasemkhani M,Garkava-Gustavsson L,Liljeroth E,et al. Assessment of diversity and genetic relationships of Neonectria ditissima:the causal agent of fruit tree canker. Hereditas,2016,153(7):1-11.

[20]Amponsah N T,Walter M,Scheper R W A. Agar media for isolation of Neonectria ditissima from symptomatic and asymptomatic apple tissues and production of infective conidia. New Zealand Plant Protection,2014,67:116-122.

基本信息:

DOI:10.19662/j.cnki.issn1005-2755.2021.00.010

中图分类号:S41-30

引用信息:

[1]焦彬彬,马纯珏,何善勇等.进境新西兰苹果中欧洲枝溃疡病菌的分离和鉴定[J].植物检疫,2021,35(02):33-38.DOI:10.19662/j.cnki.issn1005-2755.2021.00.010.

基金信息:

海关总署科研项目(2019HK044); 国家重点研发计划国家质量基础(NQI)专项(2017YFF0210302)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文